Project timeline: 02/03/2020 - 31/12/2021
Prof. Samuel Kariuki
KEMRI
Wellcome Trust
Cholera outbreaks caused by Vibrio cholerae are endemic in Kenya and the East Africa region accounting for nearly 10% of all cases reported from sub-Saharan Africa and the case-fatality rates remain above 2.5%, which is unacceptably high. Cholera is spread through consumption of fecally contaminated water or food. Investigating the relationship between cholera occurrence in terms of dominant hotspots and various environmental and human factors associated with the hotspots is important for managing cases and preventing future outbreaks. Whereas WASH interventions have been recommended by various studies as a control strategy for Cholera, the critical intervention pathways that have the most significant public health impact are not known.
The current research aims to study hotspots identified from previous outbreaks and from ongoing outbreaks in Kenya using drone technology to map areas for immediate sampling, exposure risks and most critical transmission pathways surveillance. Using SANIPATH techniques in identifying critical environmental and human factors associated with hotspots, we are deploying novel techniques including Whole Genome Sequencing (WGS) and bioinformatics partnering with relevant governmental agencies that will deploy our rapid detection and tracking techniques of these hotspots in a bid to innovatively establish preventive measures for infection emergence and spread. Data analysis will be done using basic descriptive statistics (percentages, means, standard deviations, modes) and the latest version of SAS software suite (SAS Institute Inc.) Ethical approval has been sought from Scientific Ethics Review Unit (SERU) in Kenya Medical Research Institute
Cholera is a disease caused and spread by germs that you get by eating or drinking contaminated food or water.
We are investigating areas in Mukuru slums that may harbor high concentration of these germs, e.g. sewers, open drainages, homesteads and water supply chains etc. We are using satellite imaging technologies to map areas of high risk for cholera, then get samples to investigate presence of these germs in the lab at KEMRI. This will help manage those with the disease as well as prevent future occurrence of the disease.
Work with local governments and communities to make evidence-based intervention decisions and co-design and implement WASH and/or OCV campaigns as appropriate for the local context; and
Build capacity in regional academic institutions and health ministries for applied public health research to strengthen cholera prevention and control programs.
Robert Onsare
Cecilia Mbae
John Kiiru
Susan Kavai
Prof. Wondwossen Gebreyes, Ohio State University, USA
Prof. Christine Moe, Emory University, USA