Research Projects : Export

Title Organisation / Institution Start date End date Location Pillar Project Summary Lay Summary Potential impact Keywords Links to outputs Co-Investigators Key Collaborators
CHoBI7 Trial: A hospital based WASH intervention for households of diarrheal patients in BangladeshInternational Centre for Diarrhoeal Disease Research (icddr,b)01/08/201630/09/2020BangladeshCommunity engagement - Water, Sanitation and Hygiene (WASH)

Burden

Diarrhea is the second most leading causes of deaths in children under 5 years of age globally, with an estimated 800,000 deaths annually. On an average, a child in Bangladesh suffers from 3-5 episodes of diarrhea per year. Children suffering from frequent and recurrent diarrhea suffer from food wasting, and the ultimate result is severe malnutrition and growth stunting. Once stunted, its effects typically become permanent, and children may never regain the height lost as a result of stunting. Previous studies have identified lack of caregiver hand washing with soap and treatment of household drinking water, poor water storage practices, and lack of caregivers knowledge about diarrhea prevention as important risk factors for diarrheal disease in paediatric populations. Water, sanitation, and hygiene (WASH) interventions promoting household chlorination of drinking water and hand washing with soap have the potential to reduce diarrheal disease incidence in children less than five years of age an estimated 30 to 40%. Furthermore, Community Based WASH interventions are expensive and often difficult to implement in an urban context in low resource settings. Our team has recently developed a Hospital Based WASH intervention which is entitled CHoBI7 (Cholera Hospital-Based Intervention for 7 days). The CHoBI7 intervention was initially designed to reduce cholera infection among family members of hospitalized cholera cases during the one week high risk period after the case presents at the hospital. This low cost Hospital Based WASH intervention resulted in a significant reduction in the incidence of symptomatic cholera, and a 47% percent reduction in the incidence of cholera infection among household members of hospitalized cholera cases. Furthermore, we observed sustained uptake of the promoted hand washing with soap and water treatment behaviours among intervention households 6 to 12 months after the intervention was delivered.

Knowledge gap

Despite successful intervention in our just concluded hospital based study we still do not understand if all the procedures involved can be integrated into the services provided for hospitalized diarrhea patients at health facilities of Bangladesh and the promoted hand washing with soap and water and water treatment behaviour would be a long lasting practice in the community.

Hypothesis

Based on what we have learned from our just concluded Hospital Based WASH intervention study entitled “Cholera Hospital-Based Intervention for 7 day” (CHoBI7), we hypothesize that developing and evaluating scalable approaches might help this innovative and low cost CHoBI7 intervention to be integrated into the services provided for hospitalized diarrhea patients at the health facilities of Bangladesh. We also hypothesize that evaluating the ability of the CHoBI7 intervention, which could lead to a sustained uptake of the promoted hand washing with soap and water treatment behaviours might reduce the burden of diarrheal diseases over time.

Objective 1

To Develop scalable approaches to integrate the CHoBI7 intervention in urban health facilities through formative research and engagement of key stakeholders.

Objective 3

Investigate the effectiveness of the developed scalable approaches for program delivery of CHoBI7 in terms of: (1) reductions in diarrheal disease prevalence during the 12 months period after the index diarrhea patient in the health facility receives the intervention; and (2) sustained high uptake of hand washing with soap and water treatment practices at 1 week, 1 month, 3 months, 6 months, 9 months, and 12 months post intervention.

Objective 3

Calculate the cost effectiveness of upscaling the CHoBI7 intervention in terms of cost per Disability Adjusted Life Year (DALY) averted and case and death averted for cholera and moderate to severe diarrhea episodes.

Objective 4

Investigate the feasibility of implementing the proposed low cost approaches for program delivery of CHoBI7 as part of the National Emerging and Re-emerging Diseases Program through identification of potential barriers to successful implementation, and engagement with key government stakeholders.

Objective 5

Disseminate the findings of CHoBI7 intervention implementation and evaluation activities and our recent CHoBI7 efficacy trial at the household, health facility, and national and local government levels through the creation of a website, policy planning workshops with government leaders, development of policy briefs, publishing finding in peer reviewed scientific journals, and presentations at international scientific meetings.

Methods

Diarrheal patients admitted to icddr,b Dhaka Hospital or Mugda General Hospital would be screened and enrolled according to inclusion criteria. Diarrhea patients will be recruited after they received ORS or intravenous rehydration. Household members would be recruited those accompanying the diarrhea patient to the hospital and reside in the home of the enrolled diarrhea patient. Written informed consent would be taken from the patients and their HHC before enrolment. A baseline questionnaire will then be administered to each enrolled diarrhea patient and enrolled accompanying household members (adult and child), stool sample will be collected, and anthropometric measurements will be performed. After the baseline questionnaire is administered to the index diarrhea patient and accompanying household members, they will then be randomized to their respective study arm (Control Arm/Health Facility Based Dissemination Arm / Health Facility Based Dissemination and Home Visits Arm) based on the day they arrive to the hospital. The first arm will receive the standard message given to hospitalized diarrhea patients in health facilities in Bangladesh on the use of oral rehydration solution (ORS) (Control Arm). The second arm will receive the standard message plus Health Facility Based Dissemination of CHoBI 7 (Health Facility Based Dissemination-Only Arm) and bi-weekly (every two weeks) follow-up phone calls or text messaging. The third arm will receive the standard message plus Health Facility Based Dissemination of CHoBI 7 plus two home visits (Health Facility Based Dissemination and Home Visits Arm) and biweekly follow-up phone calls or text messaging. These Randomized Control Trial activities would be 12 Months in duration in each enrolled household. Stool samples would be collected from the HHC on different time period, household drinking water would also be collected and direct observation (5 hr long) would also be performed.

Outcome measures/variables

Develop low cost effective strategies for delivering CHoBI7 in urban health facilities which can be integrated into the National Emerging and Re-emerging Diseases Program.

OtherProf. Christine Marie GeorgeMoH Bangaldesh
Johns Hopkins University
Case-area targeted intervention (CATI) for cholera outbreaks: a prospective observational studyEpicentre, Paris France01/05/202101/06/2023Cameroon - Zimbabwe - Democratic Republic of CongoCase management - Community engagement - Epidemiology surveillance - Laboratory surveillance - Vaccines - Water, Sanitation and Hygiene (WASH)

Background

Globally, the risk of small-scale cholera outbreaks propagating rapidly and enlarging extensively remains substantial. As opposed to relying on mass, community-wide approaches, cholera control strategies could focus on proactively containing the first clusters. Case-area targeted interventions (CATI) are based on the premise that early cluster detection can trigger a rapid, localised response in the high-risk radius around one or several households to reduce transmission sufficiently to extinguish the outbreak or reduce its spread. Current evidence supports a high-risk spatiotemporal zone of 100 to 250 meters around case-households for 7 days.

We hypothesize that the prompt application of CATI will reduce household transmission and transmission in the wider ring. This will result in reduced incidence in the ring and reduced clustering of cases. The local focus of CATI will enable active case-finding and sustained uptake of interventions. This will result in prompt access to care for detected cases, and reduced mortality and community transmission.

Methods

We propose to evaluate the effectiveness of a CATI strategy using an observational study design during an acute cholera epidemic, with clearly-defined measures of the effectiveness of the CATI package. In addition, we intend to evaluate the feasibility, costs, and process of implementing this approach. The CATI package delivered by Médecins Sans Frontières’ (MSF) will incorporate key transmission-reducing interventions (including household-level water, sanitation, and hygiene measures, active case-finding, antibiotic chemoprophylaxis, and, single-dose oral cholera vaccination (OCV)) which aim to rapidly reduce the risk of infection in the household and in the ring around the primary case household. MSF will decide on the contents of the CATI package used, the radius of intervention and the prioritization strategy used if the caseload is higher than the operational capacity, based on national policies, the local context, and operational considerations. In scenarios where preventative vaccination has been recently conducted or is planned, CATI and its evaluation will focus on implementation before and during the mass campaign, or in areas where vaccination coverage was sub-optimal.

The study design is based on comparing the effects of CATIs that rapidly provide protection in averting later generations of cases when compared with progressively-delayed CATIs. A regression analysis will be used to model the observed incidence of enriched RDT-positive cholera as a function of the delay to intervention (in days). The delay will reflect the inverse strength of rapid response. Groups, as a function of their delays to intervention, will serve as internal controls.

Case-area targeted interventions (CATI) are based on the premise that early cluster detection can trigger a rapid, localised response in the high-risk radius around one or several households to reduce transmission sufficiently to extinguish the outbreak or reduce its spread.

We propose to evaluate the effectiveness of a CATI strategy using an observational study design during an acute cholera epidemic, with clearly-defined measures of the effectiveness of the CATI package. In addition, we intend to evaluate the feasibility, costs, and process of implementing this approach. The CATI package delivered by Médecins Sans Frontières’ (MSF) will incorporate key transmission-reducing interventions (including household-level water, sanitation, and hygiene measures, active case-finding, antibiotic chemoprophylaxis, and, single-dose oral cholera vaccination (OCV) ) which aim to rapidly reduce the risk of infection in the household and in the ring around the primary case household.

CATI has been highlighted as a major component of the GTFCC’s global research agenda. Therefore, conducting a rigorous prospective evaluation of the effectiveness of CATI, which includes OCV and explains the pathway to impact, is an important and timely question for outbreak control.

OtherRuwan Ratnayake, London School of Hygiene and Tropical Medicine & Epicentre
Yap Boum II, Epicentre
Francisco Luquero, Epicentre
Etienne Gignoux, Epicentre
Andrew Azman, Johns Hopkins Bloomberg School of Public Health & MSF OCG
Nicolas Peyraud, MSF OCG
Iza Ciglenecki, MSF OCG
María Lightowler, MSF OCB & Epicentre
Catherine Bachy, MSF OCB
Isabella Panunzi, MSF OCB
Claire Dorion, MSF OCG
Rob D’hondt, MSF OCB
Caroline Henry-Ostian, MSF OCG
Francesco Checchi, LSHTM
John Edmunds, LSHTM
Fai Karl Gwei Njuwa, Epicentre
Rodrigue Ntone, Epicentre
Christopher Mambula, MSF OCP
Boubacar Korronney, MSF OCP
Mamady Traore, MSF OCP
Miriam Alia, MSF OCBA
Eva Ferreras, MSF OCBA
Alain Kikwaya, MSF OCBA
Primitive Kagima, MSF DRC
Joseph Amadomon Sagara, MSF, DRC
Placide Welo Okitayemba, PNECHOL, MSP, DRC
Elisabeth Mukamba, EPI, MSP, DRC
Berthe Miwanda, INRB, MSP, DRC
Linda Esso, MSP, Cameroun
Georges Alain Etoundi Mballa, MSP, Cameroun
Nadia Mandeng MSP, Cameroun
Adjidja Amani, MSP, Cameroun
Patricia Mendjimé, MSP, Cameroun
Marie-Claire Okomo, LNSP, Cameroun
PNECHOL
MSP, DRC
INRB, DRC
MSP, Cameroun
LNSP, Cameroun
Cholera prevention, preparedness, and control in Kenya through hotspot mapping, genotyping, exposure assessment, and WASH & oral cholera vaccine interventionsKEMRI02/03/202031/12/2021KenyaCommunity engagement - Laboratory surveillance - Vaccines - Water, Sanitation and Hygiene (WASH)

Cholera outbreaks caused by Vibrio cholerae are endemic in Kenya and the East Africa region accounting for nearly 10% of all cases reported from sub-Saharan Africa and the case-fatality rates remain above 2.5%, which is unacceptably high. Cholera is spread through consumption of fecally contaminated water or food. Investigating the relationship between cholera occurrence in terms of dominant hotspots and various environmental and human factors associated with the hotspots is important for managing cases and preventing future outbreaks. Whereas WASH interventions have been recommended by various studies as a control strategy for Cholera, the critical intervention pathways that have the most significant public health impact are not known.

The current research aims to study hotspots identified from previous outbreaks and from ongoing outbreaks in Kenya using drone technology to map areas for immediate sampling, exposure risks and most critical transmission pathways surveillance. Using SANIPATH techniques in identifying critical environmental and human factors associated with hotspots, we are deploying novel techniques including Whole Genome Sequencing (WGS) and bioinformatics partnering with relevant governmental agencies that will deploy our rapid detection and tracking techniques of these hotspots in a bid to innovatively establish preventive measures for infection emergence and spread. Data analysis will be done using basic descriptive statistics (percentages, means, standard deviations, modes) and the latest version of SAS software suite (SAS Institute Inc.) Ethical approval has been sought from Scientific Ethics Review Unit (SERU) in Kenya Medical Research Institute

Cholera is a disease caused and spread by germs that you get by eating or drinking contaminated food or water.

We are investigating areas in Mukuru slums that may harbor high concentration of these germs, e.g. sewers, open drainages, homesteads and water supply chains etc. We are using satellite imaging technologies to map areas of high risk for cholera, then get samples to investigate presence of these germs in the lab at KEMRI. This will help manage those with the disease as well as prevent future occurrence of the disease.

Work with local governments and communities to make evidence-based intervention decisions and co-design and implement WASH and/or OCV campaigns as appropriate for the local context; and

Build capacity in regional academic institutions and health ministries for applied public health research to strengthen cholera prevention and control programs.

Cholera - Other - WASHRobert Onsare
Cecilia Mbae
John Kiiru
Susan Kavai
Prof. Wondwossen Gebreyes, Ohio State University, USA
Prof. Christine Moe, Emory University, USA
Effect of extended dose intervals on the iImmune response to oral cholera vaccine in CameroonJohns Hopkins Bloomberg School of Public Health07/12/201931/05/2021CameroonCommunity engagement - Vaccines

This project will compare the vibriocidal titers in subjects who receive a second dose of oral cholera vaccine (Shanchol), two weeks, 6 months or 11.5 months after the first dose. The primary outcome is the geometric mean vibriocidal titer two weeks after the second dose. Additional follow-up serum samples will determine the persistence of the vibriocidal titers.

This will provide guidance when the second dose of OCV is delayed.

Amanda Debes
Jerome Ateudjieu
MA Santé