Research Projects : Export

Title Organisation / Institution Start date End date Location Pillar Project Summary Lay Summary Potential impact Keywords Links to outputs Co-Investigators Key Collaborators
Ethiopia Cholera Control and Prevention (ECCP)International Vaccine Institute01/01/202131/12/2023EthiopiaCommunity engagement - Laboratory surveillance - Vaccines

Cholera remains a public health concern in Ethiopia. We aim to contribute to reducing the burden of cholera and generate scientifically strong data on the effectiveness and impact of OCV (Euvichol-Plus) vaccination in target areas in Ethiopia, as well as various aspects of cholera epidemiology. This includes the disease burden, disease severity and fatality, transmission and carriage/shedding, site-specific risk factors and healthcare seeking behaviour associated with cholera, etiologies of non-cholera diarrheal diseases and antimicrobial resistance, and etc. This project will contribute to the country’s efforts towards the national cholera plan (NCP), with evidence-based data to be generated and stakeholder engagements in alignment with the WHO Global Task Force for Cholera Control (GTFCC) ‘Ending Cholera – Global Roadmap to 2030’.

Oral Cholera Vaccine - Surveillance - Effectiveness - Community - TransmissionMekonnen Teferi, Site PI, AHRI
Biruk Yeshitela, AHRI
Moti Edosa, EPHI
Site research team at AHRI and EPHI
Abel Gedefaw, IVI
Dejene Hailu, IVI
Yeonji Jeon, IVI
Ondari Mogeni, IVI
Geun Hyeog Jang, IVI
David Mukasa, IVI
Gideok Pak, IVI
Deok Ryun Kim, IVI
Armauer Hansen Research Institute (AHRI)
Ethiopia Public Health Institute (EPHI)
Serosurveillance to improve estimates of burden and at-risk populations of cholera and COVID-19International Centre for Diarrhoeal Disease Research (icddr,b)18/01/202101/12/2021BangladeshCase management - Community engagement - Epidemiology surveillance - Water, Sanitation and Hygiene (WASH)

Burden

Cholera remains a major global health problem, resulting in more than 100,000 deaths and several million cases annually. Bangladesh, which lies in the Ganges River Delta, is a hyper endemic country and has an estimated 300,000 cholera cases and over 4,500 deaths annually. In early 2020, the SARSCoV-2 pandemic shocked the world leading to over 43 million cases and over 1 million deaths globally by October 2020. In Bangladesh, by October 2020, there have been an estimated 400,000 cases and over 5,000 deaths. With the implementation of non-pharmaceutical interventions like social distancing, healthcare seeking behaviors have likely been affected resulting in the likely underestimation of both cholera and COVID-19 cases.

Knowledge gap

To meet the ambitious goals set by the WHO of reducing cholera as a public health threat by 2030 and reduce cholera in the hyper endemic setting of Bangladesh, improving our methods for counting cholera cases and infections is critical for control planning. At present, most cholera burden estimates are derived from passive clinical based surveillance, which only captures a portion of true cases and infections due to barriers to healthcare seeking. While we have recently developed methods to estimate V. cholera infection incidence at the population-level, some fundamental questions still remain on how to interpret this data in relation to clinical incidence. Furthermore, we know little about how the COVID-19 pandemic has affected healthcare seeking for cholera or what the seroprevalence of SARS-CoV-2 is in the population.

Relevance

Results from this study will improve our knowledge of cholera incidence in Bangladesh to aid the distribution of interventions like the oral cholera vaccine. Refining our methods for estimating cholera burden will additionally improve how we estimate cholera burden in other countries and estimate future vaccine demand. This study will also result in the estimation of the seroprevalence of SARSCoV- 2 infection in the study region in Bangladesh which will help inform the implementation of
interventions like vaccination and improve our understanding of how the COVID-19 pandemic has disrupted healthcare seeking behaviours.

Objectives

The primary objective of this study is to improve and refine our methods for estimating correlates of cholera burden from cross-sectional serosurveys though enhanced clinical surveillance of cholera at two healthcare facilities and through serial serosurveys. A secondary objective of this study is to better understand the maturity of the SARS-COV-2 epidemic in this population by measuring the prevalence of SARS-COV-2 antibodies in the population and estimating key individual-, household- and
community-level risk factors for infection.

Study Site

This study will be focused at two healthcare facilities, the Bangladesh Institute of Tropical Infectious Diseases (BITID) and the Sitakunda Upazila Health Complex (UHC), and their catchment population, the Sitakunda Upazila within the Chittagong District in South Eastern Bangladesh. Historical clinical and serologic surveillance from the district suggest that cholera incidence is relatively high compared to other parts of Bangladesh (e.g.,1.15 times the seroincidence than the mean for the country based on a serosurvey conducted in 2015) with two seasonal peaks in cholera admissions, the larger one typically starting in March and the smaller one towards the end of the calendar year. Clinical surveillance data from 2014-2018 illustrate that a greater number of patients with acute watery diarrhea visit BITID from April to June; on average approximately 4,000 individuals seek care at BITID for acute watery diarrhea within a single year. We anticipate that within a 18-month period,
approximately 9,000 patients will seek care at both BITID and the Sitakunda UHC.

Cholera remains a major global health problem, resulting in more than 100,000 deaths and several million cases annually. Bangladesh, which lies in the Ganges River Delta, is a hyper endemic country and has an estimated 300,000 cholera cases and over 4,500 deaths annually. In early 2020, the SARS-CoV-2 pandemic shocked the world leading to over 43 million cases and over 1 million deaths globally by October 2020. In Bangladesh, by October 2020, there have been an estimated 400,000 cases and over 5,000 deaths. With the implementation of non-pharmaceutical interventions like social distancing, healthcare seeking behaviors have likely been affected resulting in the likely underestimation of both cholera and COVID-19 cases.

The primary objective of this study is to improve and refine our methods for estimating correlates of cholera burden from cross-sectional serosurveys though enhanced clinical surveillance of cholera at two healthcare facilities and through serial serosurveys. A secondary objective of this study is to better understand the maturity of the SARS-COV-2 epidemic in this population by measuring the prevalence of SARS-COV-2 antibodies in the population and estimating key individual-, household- and community-level risk factors for infection.

Our primary study outcome is the change in seroincidence between the first and third serosurvey to capture changes in cholera incidence over the course of the typical high and low season at the study site. Our secondary outcome is the prevalence of anti-SARS-CoV-2 antibodies among individuals in the first serosurvey. We will explore the associations between seropositivity (for cholera and SARS-COV-2) and different individual-, household- and community-level risk factors collected in the surveys, including WASH attributes and factors like population density, travel time (to the nearest city), distance to a major water body, community water and sanitation coverage, and poverty.

CholeraAshraful Islam Khan, icddr,b
Md Taufiqur Rahman Bhuiyan, icddr,b
Andrew Azman, Johns Hopkins Bloomberg School of Public Health
Fahima Chowdhury, icddr,b
Farhana Khanam, icddr,b
Zahid Hasan Khan, icddr,b
Md. Taufiqul Islam, icddr,b
Professor Tahmina Shirin, IEDCR
Dr Sonia T Hedge, Johns Hopkins Bloomberg School of Public Health
Dr Emily Gurley, Johns Hopkins Bloomberg School of Public Health
Dr Elizabeth Lee, Johns Hopkins Bloomberg School of Public Health
Dr. Justin Lessler, Johns Hopkins Bloomberg School of Public Health
Professor Dr. Md. Abul Hassan Chowdhury, Bangladesh Institute for Tropical Infectious Diseases (BITID)
Dr. Mamunur Rashid, Bangladesh Institute for Tropical Infectious Diseases (BITID)
Dr. Md. Shakeel Ahmed, Bangladesh Institute for Tropical Infectious Diseases (BITID)
Johns Hopkins University School of Medicine
CHoBI7 Trial: A hospital based WASH intervention for households of diarrheal patients in BangladeshInternational Centre for Diarrhoeal Disease Research (icddr,b)01/08/201630/09/2020BangladeshCommunity engagement - Water, Sanitation and Hygiene (WASH)

Burden

Diarrhea is the second most leading causes of deaths in children under 5 years of age globally, with an estimated 800,000 deaths annually. On an average, a child in Bangladesh suffers from 3-5 episodes of diarrhea per year. Children suffering from frequent and recurrent diarrhea suffer from food wasting, and the ultimate result is severe malnutrition and growth stunting. Once stunted, its effects typically become permanent, and children may never regain the height lost as a result of stunting. Previous studies have identified lack of caregiver hand washing with soap and treatment of household drinking water, poor water storage practices, and lack of caregivers knowledge about diarrhea prevention as important risk factors for diarrheal disease in paediatric populations. Water, sanitation, and hygiene (WASH) interventions promoting household chlorination of drinking water and hand washing with soap have the potential to reduce diarrheal disease incidence in children less than five years of age an estimated 30 to 40%. Furthermore, Community Based WASH interventions are expensive and often difficult to implement in an urban context in low resource settings. Our team has recently developed a Hospital Based WASH intervention which is entitled CHoBI7 (Cholera Hospital-Based Intervention for 7 days). The CHoBI7 intervention was initially designed to reduce cholera infection among family members of hospitalized cholera cases during the one week high risk period after the case presents at the hospital. This low cost Hospital Based WASH intervention resulted in a significant reduction in the incidence of symptomatic cholera, and a 47% percent reduction in the incidence of cholera infection among household members of hospitalized cholera cases. Furthermore, we observed sustained uptake of the promoted hand washing with soap and water treatment behaviours among intervention households 6 to 12 months after the intervention was delivered.

Knowledge gap

Despite successful intervention in our just concluded hospital based study we still do not understand if all the procedures involved can be integrated into the services provided for hospitalized diarrhea patients at health facilities of Bangladesh and the promoted hand washing with soap and water and water treatment behaviour would be a long lasting practice in the community.

Hypothesis

Based on what we have learned from our just concluded Hospital Based WASH intervention study entitled “Cholera Hospital-Based Intervention for 7 day” (CHoBI7), we hypothesize that developing and evaluating scalable approaches might help this innovative and low cost CHoBI7 intervention to be integrated into the services provided for hospitalized diarrhea patients at the health facilities of Bangladesh. We also hypothesize that evaluating the ability of the CHoBI7 intervention, which could lead to a sustained uptake of the promoted hand washing with soap and water treatment behaviours might reduce the burden of diarrheal diseases over time.

Objective 1

To Develop scalable approaches to integrate the CHoBI7 intervention in urban health facilities through formative research and engagement of key stakeholders.

Objective 3

Investigate the effectiveness of the developed scalable approaches for program delivery of CHoBI7 in terms of: (1) reductions in diarrheal disease prevalence during the 12 months period after the index diarrhea patient in the health facility receives the intervention; and (2) sustained high uptake of hand washing with soap and water treatment practices at 1 week, 1 month, 3 months, 6 months, 9 months, and 12 months post intervention.

Objective 3

Calculate the cost effectiveness of upscaling the CHoBI7 intervention in terms of cost per Disability Adjusted Life Year (DALY) averted and case and death averted for cholera and moderate to severe diarrhea episodes.

Objective 4

Investigate the feasibility of implementing the proposed low cost approaches for program delivery of CHoBI7 as part of the National Emerging and Re-emerging Diseases Program through identification of potential barriers to successful implementation, and engagement with key government stakeholders.

Objective 5

Disseminate the findings of CHoBI7 intervention implementation and evaluation activities and our recent CHoBI7 efficacy trial at the household, health facility, and national and local government levels through the creation of a website, policy planning workshops with government leaders, development of policy briefs, publishing finding in peer reviewed scientific journals, and presentations at international scientific meetings.

Methods

Diarrheal patients admitted to icddr,b Dhaka Hospital or Mugda General Hospital would be screened and enrolled according to inclusion criteria. Diarrhea patients will be recruited after they received ORS or intravenous rehydration. Household members would be recruited those accompanying the diarrhea patient to the hospital and reside in the home of the enrolled diarrhea patient. Written informed consent would be taken from the patients and their HHC before enrolment. A baseline questionnaire will then be administered to each enrolled diarrhea patient and enrolled accompanying household members (adult and child), stool sample will be collected, and anthropometric measurements will be performed. After the baseline questionnaire is administered to the index diarrhea patient and accompanying household members, they will then be randomized to their respective study arm (Control Arm/Health Facility Based Dissemination Arm / Health Facility Based Dissemination and Home Visits Arm) based on the day they arrive to the hospital. The first arm will receive the standard message given to hospitalized diarrhea patients in health facilities in Bangladesh on the use of oral rehydration solution (ORS) (Control Arm). The second arm will receive the standard message plus Health Facility Based Dissemination of CHoBI 7 (Health Facility Based Dissemination-Only Arm) and bi-weekly (every two weeks) follow-up phone calls or text messaging. The third arm will receive the standard message plus Health Facility Based Dissemination of CHoBI 7 plus two home visits (Health Facility Based Dissemination and Home Visits Arm) and biweekly follow-up phone calls or text messaging. These Randomized Control Trial activities would be 12 Months in duration in each enrolled household. Stool samples would be collected from the HHC on different time period, household drinking water would also be collected and direct observation (5 hr long) would also be performed.

Outcome measures/variables

Develop low cost effective strategies for delivering CHoBI7 in urban health facilities which can be integrated into the National Emerging and Re-emerging Diseases Program.

OtherProf. Christine Marie George MoH Bangaldesh
Johns Hopkins University
Influence of community-led total sanitation and water coverages in the control of cholera in Madarounfa, NigerUNICEF01/09/201831/03/2021NigerCommunity engagement - Epidemiology surveillance - Water, Sanitation and Hygiene (WASH)

Every year cholera affects 1.3 to 4.0 million people worldwide with a particularly high presence in Africa. Based on recent studies, effective targeting interventions in hotspots could eliminate up to 50% of cases in Sub-Saharan Africa (1). Those interventions include Water, Sanitation and Hygiene (WASH) programs whose influence on cholera control, up to present, has been poorly quantified. Considering the limited number of studies on Community-Led Total Sanitation (CLTS) and water coverages related to cholera control, the aim of our work is to determine whether these interventions in cholera hotspots (geographic areas vulnerable to disease transmission) have significant impact on cholera transmission.

In this study, we consider data collected on 125 villages of the Madarounfa district (Niger) during the 2018 cholera outbreak. Using a hurdle model, our findings show that full access to improved sanitation significantly decreases the likelihood of cholera by 91% (P<0.0001) compared to villages no access to sanitation at all. Considering only the villages affected by cholera in the studied area, cholera cases decrease by a factor of 4.3 in those villages where there is partial access to at least quality water sources, while full access to improved water sources decrease the cholera cases by a factor of 6.3 when compared to villages without access to water (P<0.001).

In addition, villages without access to safe water and sanitation are 6.7 times (P<0.0001) more likely to get cholera. Alternatively, villages with full sanitation and water coverage are 9.1 (P < 0.0001) less likely to get cholera.

The findings of our study suggest that significant access to improved water and sanitation at the village level offer a strong barrier against cholera transmission. However, it requires full CLTS coverage of the village to observe strong impact on cholera as partial access only has a limited impact.

Influence on needs for WASH projects in hotspots in prevention of cholera.

WASH - OtherMaria E. Reserva
Alama Keita
Roberto Molinari
Guillaume Constantin de Magny
Case-area targeted intervention (CATI) for cholera outbreaks: a prospective observational studyEpicentre, Paris France01/05/202101/05/2022Cameroon - Zimbabwe - Democratic Republic of CongoCase management - Community engagement - Epidemiology surveillance - Laboratory surveillance - Vaccines - Water, Sanitation and Hygiene (WASH)

Background

Globally, the risk of small-scale cholera outbreaks propagating rapidly and enlarging extensively remains substantial. As opposed to relying on mass, community-wide approaches, cholera control strategies could focus on proactively containing the first clusters. Case-area targeted interventions (CATI) are based on the premise that early cluster detection can trigger a rapid, localised response in the high-risk radius around one or several households to reduce transmission sufficiently to extinguish the outbreak or reduce its spread. Current evidence supports a high-risk spatiotemporal zone of 100 to 250 meters around case-households for 7 days.

We hypothesize that the prompt application of CATI will reduce household transmission and transmission in the wider ring. This will result in reduced incidence in the ring and reduced clustering of cases. The local focus of CATI will enable active case-finding and sustained uptake of interventions. This will result in prompt access to care for detected cases, and reduced mortality and community transmission.

Methods

We propose to evaluate the effectiveness of a CATI strategy using an observational study design during an acute cholera epidemic, with clearly-defined measures of the effectiveness of the CATI package. In addition, we intend to evaluate the feasibility, costs, and process of implementing this approach. The CATI package delivered by Médecins Sans Frontières’ (MSF) will incorporate key transmission-reducing interventions (including household-level water, sanitation, and hygiene measures, active case-finding, antibiotic chemoprophylaxis, and, single-dose oral cholera vaccination (OCV)) which aim to rapidly reduce the risk of infection in the household and in the ring around the primary case household. MSF will decide on the contents of the CATI package used, the radius of intervention and the prioritization strategy used if the caseload is higher than the operational capacity, based on national policies, the local context, and operational considerations. In scenarios where preventative vaccination has been recently conducted or is planned, CATI and its evaluation will focus on implementation before and during the mass campaign, or in areas where vaccination coverage was sub-optimal.

The study design is based on comparing the effects of CATIs that rapidly provide protection in averting later generations of cases when compared with progressively-delayed CATIs. A regression analysis will be used to model the observed incidence of enriched RDT-positive cholera as a function of the delay to intervention (in days). The delay will reflect the inverse strength of rapid response. Groups, as a function of their delays to intervention, will serve as internal controls.

Case-area targeted interventions (CATI) are based on the premise that early cluster detection can trigger a rapid, localised response in the high-risk radius around one or several households to reduce transmission sufficiently to extinguish the outbreak or reduce its spread.

We propose to evaluate the effectiveness of a CATI strategy using an observational study design during an acute cholera epidemic, with clearly-defined measures of the effectiveness of the CATI package. In addition, we intend to evaluate the feasibility, costs, and process of implementing this approach. The CATI package delivered by Médecins Sans Frontières’ (MSF) will incorporate key transmission-reducing interventions (including household-level water, sanitation, and hygiene measures, active case-finding, antibiotic chemoprophylaxis, and, single-dose oral cholera vaccination (OCV) ) which aim to rapidly reduce the risk of infection in the household and in the ring around the primary case household.

CATI has been highlighted as a major component of the GTFCC’s global research agenda. Therefore, conducting a rigorous prospective evaluation of the effectiveness of CATI, which includes OCV and explains the pathway to impact, is an important and timely question for outbreak control.

OtherRuwan Ratnayake, London School of Hygiene and Tropical Medicine & Epicentre
Yap Boum II, Epicentre
Francisco Luquero, Epicentre
Etienne Gignoux, Epicentre
Andrew Azman, Johns Hopkins Bloomberg School of Public Health & MSF OCG
Nicolas Peyraud, MSF OCG
Iza Ciglenecki, MSF OCG
María Lightowler, MSF OCB & Epicentre
Catherine Bachy, MSF OCB
Isabella Panunzi, MSF OCB
Claire Dorion, MSF OCG
Rob D’hondt, MSF OCB
Caroline Henry-Ostian, MSF OCG
Francesco Checchi, LSHTM
John Edmunds, LSHTM
Fai Karl Gwei Njuwa, Epicentre
Rodrigue Ntone, Epicentre
Christopher Mambula, MSF OCP
Boubacar Korronney, MSF OCP
Mamady Traore, MSF OCP
Miriam Alia, MSF OCBA
Eva Ferreras, MSF OCBA
Alain Kikwaya, MSF OCBA
Primitive Kagima, MSF DRC
Joseph Amadomon Sagara, MSF, DRC
Placide Welo Okitayemba, PNECHOL, MSP, DRC
Elisabeth Mukamba, EPI, MSP, DRC
Berthe Miwanda, INRB, MSP, DRC
Linda Esso, MSP, Cameroun
Georges Alain Etoundi Mballa, MSP, Cameroun
Nadia Mandeng MSP, Cameroun
Adjidja Amani, MSP, Cameroun
Patricia Mendjimé, MSP, Cameroun
Marie-Claire Okomo, LNSP, Cameroun
PNECHOL
MSP, DRC
INRB, DRC
MSP, Cameroun
LNSP, Cameroun
Cholera prevention, preparedness, and control in Kenya through hotspot mapping, genotyping, exposure assessment, and WASH & oral cholera vaccine interventionsKEMRI02/03/202031/12/2021KenyaCommunity engagement - Laboratory surveillance - Vaccines - Water, Sanitation and Hygiene (WASH)

Cholera outbreaks caused by Vibrio cholerae are endemic in Kenya and the East Africa region accounting for nearly 10% of all cases reported from sub-Saharan Africa and the case-fatality rates remain above 2.5%, which is unacceptably high. Cholera is spread through consumption of fecally contaminated water or food. Investigating the relationship between cholera occurrence in terms of dominant hotspots and various environmental and human factors associated with the hotspots is important for managing cases and preventing future outbreaks. Whereas WASH interventions have been recommended by various studies as a control strategy for Cholera, the critical intervention pathways that have the most significant public health impact are not known.

The current research aims to study hotspots identified from previous outbreaks and from ongoing outbreaks in Kenya using drone technology to map areas for immediate sampling, exposure risks and most critical transmission pathways surveillance. Using SANIPATH techniques in identifying critical environmental and human factors associated with hotspots, we are deploying novel techniques including Whole Genome Sequencing (WGS) and bioinformatics partnering with relevant governmental agencies that will deploy our rapid detection and tracking techniques of these hotspots in a bid to innovatively establish preventive measures for infection emergence and spread. Data analysis will be done using basic descriptive statistics (percentages, means, standard deviations, modes) and the latest version of SAS software suite (SAS Institute Inc.) Ethical approval has been sought from Scientific Ethics Review Unit (SERU) in Kenya Medical Research Institute

Cholera is a disease caused and spread by germs that you get by eating or drinking contaminated food or water.

We are investigating areas in Mukuru slums that may harbor high concentration of these germs, e.g. sewers, open drainages, homesteads and water supply chains etc. We are using satellite imaging technologies to map areas of high risk for cholera, then get samples to investigate presence of these germs in the lab at KEMRI. This will help manage those with the disease as well as prevent future occurrence of the disease.

Work with local governments and communities to make evidence-based intervention decisions and co-design and implement WASH and/or OCV campaigns as appropriate for the local context; and

Build capacity in regional academic institutions and health ministries for applied public health research to strengthen cholera prevention and control programs.

Cholera - Other - WASHRobert Onsare
Cecilia Mbae
John Kiiru
Susan Kavai
Prof. Wondwossen Gebreyes, Ohio State University, USA
Prof. Christine Moe, Emory University, USA
Protective immunity to human cholera in BangladeshInternational Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b)24/09/201123/09/2021BangladeshCommunity engagement - Epidemiology surveillance - Laboratory surveillance - Vaccines

Diarrheal diseases are one of the most common causes of morbidity and mortality in the world today. It is estimated that a child dies of diarrhea approximately every 15-30 seconds; almost all of these deaths occur in the developing world. One of the, causative organisms, Vibrio cholerae, causes severe secretory diarrhea in humans. A prototypical mucosal infection, V. cholerae does not invade the intestinal epithelium and serves as an excellent model for the study of mucosal immunity and vaccination. The study focuses on defining the mechanisms of protective immunity to infection with V. cholerae so as to understand the requisites for the development of a protective cholera vaccine.

The central hypothesis of this proposal is that V. cholerae expresses specific proteins during early human infection, which generate immune responses that are protective on subsequent exposure; that these proteins may not be adequately expressed during colonization with currently available vaccine strains, and that these differences may explain the generally lessened efficacy of current vaccine approaches. As a result of this study, we hope to assess immune responses following cholera vaccination with the killed oral vaccines (Dukoral and/or Shanchol), and compare with responses to those seen following natural cholera. In order, to assess the duration of immunity to known cholera virulence factors, we will determine antigen-specific memory B cells circulating in human blood, to examine the longevity of B cell immunologic memory. To determine the mucosal immune responses, we will follow the immune responses using duodenal biopsies from patients recovered from cholera and correlate the duration of antigen-specific, antibody-secreting cells over a period of one year.

In addition to cholera patients, we will also study household contacts to assess innate and acquired immune responses early after exposure in household contacts of cholera patients, to determine correlates of subsequent protective immunity to cholera. The study planned is a continuation of investigations of immune responses in cholera (Pr#2005-030).

Yes, that impact the development of immune responses following cholera or that influence the development of clinical illness following exposure to the organism.

OtherDr. A.S.G. Faruque, icddr,b
Dr. Ashraful Islam Khan, icddr,b
Dr. Fahima Chowdhury, icddr,b
Dr. Stephen B. Calderwood, Massachusetts General Hospital, USA
Dr. Edward T. Ryan, Massachusetts General Hospital, USA
Dr. N H Alam, icddr,b
Dr. M.A Salam, icddr,b
Dr. Taufiqur Rahman Bhuiyan, icddr,b
Dr. Regina C. LaRocque, Massachusetts General Hospital, USA
Dr. Jason Harris, Massachusetts General Hospital, USA
Massachusetts General Hospital, USA
Phenotypic, molecular, and phylogenetic properties of Vibrio cholerae causing endemic cholera in Latin America: a follow-up studyInternational Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b)10/03/201309/03/2021BangladeshCase management - Community engagement - Epidemiology surveillance - Laboratory surveillance - Vaccines

Burden

Cholera is life threatening disease that remains one of the major causes of deaths in the developing countries. Although more than 200 serogroups of V. cholerae reported so far, serogroup O1 and O139 are the major pathogenic strains. Serogroup O1 has two biotypes, classical and El Tor. The classical biotype caused first six cholera pandemics in the Ganges Delta of Bay of Bengal and the other parts of the world. The El Tor biotype of V. cholerae initiated the ongoing 7th pandemic in early 1960s. The El Tor biotype was displaced for a short while in late 1992 when an explosive cholera epidemic occurred by V. cholerae O139 synonym Bengal. O139 however, failed to continue as the predominant epidemic strain and thus V. cholerae El Tor continued to cause the ongoing 7th pandemic.

Knowledge gap

A retrospective study on V. cholerae strains isolated between 1991 and 1997 showed that the biotypes Classical, El Tor, and El Tor variants were involved in endemic cholera in Mexico and ET prototype (wild type) were involved in Peru. We are not aware about the present status of cholera bacteria in different parts of Latin America so; a follow-up study on V. cholerae isolated from 1998 to 2012 was designed.

Hypothesis

The V. cholerae strains causing endemic cholera between 1998 and 2012 in Mexico and other countries of Latin America might not be different in terms of biotype, phenotype, molecular, and phylogenetic properties compared with Asia and Africa.

Objectives

The aim of this study is to determine the prevalent sero-biotypes, molecular status and clonal nature of V. cholerae isolated in Mexico and other Latin American countries and compare those characteristics with the strains isolated from Gangetic Bengal and Africa.

Methods

150 V. cholerae strains (both clinical and environmental) which included 89 strains isolated in Mexico, 45 in Peru, 12 in Brazil, and 6 in Guatemala will be analyzed by culture method, serogrouping and antibiogram. V. cholerae strains will also be subjected to detection of marker genes such as ompW, wbeO1, wbfO139, ctxA and ctxB by PCR. Extensive molecular characterizations using multi-locus genome screening and DNA fingerprinting (phylogeny) by PFGE will also be done.

Outcome measures/variables

This study will generate valuable information on nature (clonal types) of cholera bacteria, their transmission patterns world-wide. This is important because updated information on phenotypic, molecular, and phylogenetic characteristics of V. cholerae associated with cholera in Mexico and other Latin American countries are lacking.

The V. cholerae strains causing endemic cholera between 1998 and 2012 in Mexico and other countries of Latin America might not be different in terms of biotype, phenotype, molecular, and phylogenetic properties compared with Asia and Africa.

OtherHaruo Watanabe, National Institute of Infectious Diseases, Japan
Dr. Alejandro Cravioto, International Vaccine Institute, Seoul, Korea
Shah Manzur Rashed, icddr,b;
National Institute of Infectious Diseases (NIID), Japan
What influences community engagement and healthcare system strengthening interventions for cholera control in lower- and middle-income countries? A scoping reviewKarolinska Institutet04/01/202104/06/2021SwedenCommunity engagement

Cholera is endemic in many lower- and middle-income countries (LMICs) due to persistent environmental reservoirs, poor sanitation, hygiene, and water services, compounded by humanitarian disasters. Community engagement and health system strengthening are two proposed pillars of the WHO Global Taskforce on Cholera Control (GTFCC) Roadmap 2030 to eradicate cholera in endemic countries. Health system strengthening interventions has shown positive impacts on health outcomes; and community engagement appears to facilitate lowered water-borne disease transmission rates in outbreak situations. However, specific barriers and facilitators for both concepts, and any interfacing factors are unclear. Therefore the objective was to identify and describe the facilitators and barriers concerning community engagement and healthcare system strengthening for cholera control as well as any factors acting at the interface of both interventions in LMICs.

The Arksey and O’Malley framework for scoping reviews was employed and three electronic databases (PubMed, CINAHL and Web of Science) were searched using database specific combinations of search terms representative of cholera, community, and healthcare system components. Documents in English, within the period 1990 to 2021, in LMICs and focusing on explicitly reasoned facilitators or barriers of health system strengthening, community engagement or the interface between were included. Data charting was completed using narrative descriptive analysis, followed by thematic analysis. Reporting was done in line with PRISMA-ScR guidelines.

Forty-four documents met the study predefined inclusion criteria and were included for the review. Documents covered a wide range of countries, with Haiti most often mentioned. Half of included documents related to Sub-Saharan African countries, 68% (30/44) to cholera endemic settings and 20.5% (9/44) to conflict or civil unrest settings. Thematic analysis identified three themes of facilitators and barriers for health systems strengthening: cooperation between stakeholders; capacity for task fulfilment; governance, supervision, and feedback; and insecurity. Two themes described Community engagement facilitators and barriers: trust building and social cohesion. Strong governance and capacity adaptation facilitated health system strengthening while community representatives and civic structures enabled community participation and empowerment. Stigma, communication strategies targeting personal characteristics, poor leadership, interfering socio-political factors and conflict acted as barriers to both concepts as well as the interface between.

Findings from this study suggest that insecurity, community representatives and poor governance with interfering socio-political factors influence community health system interactions and trust building and may impair intervention impact.

Cholera is an ongoing global health problem, especially in poor communities or refugee camps lacking water and sanitation services. To eradicate cholera the WHO Global Taskforce on Cholera Control (GTFCC) Cholera roadmap proposes health system strengthening and community engagement interventions. But it is not known how best to achieve these. To explore this gap a scoping review of facilitators and barriers to the two concepts was completed. This included searching electronic databases for relevant documents and analysing them. 44 documents were included with most concerning Sub-Saharan African countries and countries that have cholera as a long term problem, and some documents mentioned Insecurity and conflict. results showed that conflict, interfering social and political factors and poor leadership affected both health system and community engagement interventions. Health system strengthening was influenced by cooperation, capacity adaptation, supervision and feedback. Community engagement was improved through community representatives and organisations.

Awareness of facilitators and barriers to community engagement and what affects community-health system interactions can help to contextualise these to ensure the greatest chance of sustained community ownership of cholera interventions. Mitigating against barriers of health system strengthening interventions can help build resilient health systems.

OtherKelly Elimian
OVERCOME – digital innOVation in climatE hazaRd early warning and related disease prevention for COMmunity capacity building and rEsilienceCentre for Water Systems, University of Exeter, UK01/05/202031/10/2021Ghana - Malawi - Mozambique - ZimbabweCommunity engagement - Epidemiology surveillance - Water, Sanitation and Hygiene (WASH)

OVERCOME will establish a transnational consortium with multidisciplinary expertise for cross-sectoral collaborative research in creating innovative technological methodologies and applications, including observations/surveillance, Internet of Things, climate/weather forecasting, artificial intelligence, machine learning, and data analytics to strengthen our capacity in predicting the outbreaks of cholera and other water-related diseases. We will engage with stakeholders from academia, industry, governments, NGOs, coming from a wide range of sectors e.g. natural environment, health care, environment-economic, urban planning, utility services, disaster management, policy making, etc., and local communities in co-shaping the research questions and targeted outcomes. One example is that we hope to fill the gap between rainfall and runoff in cholera forecasting, as well as between floods and epidemiology. The team building and methodology defining in the first 12 months will enable the follow-up research in the second phase for delivering an ultimate holistic framework that supports these stakeholders in strategic planning and decision making to enhance societal resilience to climatic hazards. This will strengthen the capacity of vulnerable communities in minimising the negative impact of disasters, such as cholera, and associated health risks, which will improve country progress in addressing Sustainable Development Goals (SDGs).

OVERCOME consortium includes world-leading organisations to develop state-of-the-art research plans that integrate digital innovations in natural hazard and risk predictions in order to develop intervention strategies for strengthening the resilience of vulnerable communities against climate hazards and health impacts, including cholera and other water-related diseases.

The partners from the UK, Malawi, Mozambique, and Zimbabwe will contribute knowledge and skills in climate and meteorology, hydrology and water resources, flood forecasting, droughts, water quality, epidemiology and public health, smart technologies, data science, environmental science, Water, Sanitation and Hygiene (WASH), risk communication, disaster management, social and policy sciences, and socio-economics. The collaboration will combine multidisciplinary knowledge to develop a novel holistic framework to forecast the impact of floods/droughts and associated disease outbreaks. OVERCOME also has strong support from global experts and local major stakeholders. The external partners will steer research direction throughout the project, contribute their complementary knowledge, and engage the team with additional partners through their strong international networking.

OVERCOME consortium will co-design an innovate holistic framework to help governments and local authorities in the partnering countries more accurately identify the timing and locations where the hazards and diseases, including cholera, will hit.

Albert Chen, University of Exeter, UK
Slobodan Djordjevic, University of Exeter, UK
Barry Evans, University of Exeter, UK
Karyn Morrissey, University of Exeter, UK
Kath Maguire, University of Exeter, UK
Kourosh Behzadian, University of West London, UK
Ying Zhang, University of West London, UK
Luiza Campos, University College of London, UK
Carla Washborne, University College of London, UK
Julia Tomei, University College of London, UK
Revati Phalkey, Public Health England, UK
Gordon Nichols, Public Health England, UK
Martin Dolan, Aquobex Technologies, UK
Conrad Bielski, Aquobex Technologies, UK
Bernardino Nhantumbo, National Institute of Meteorology, Mozambique
Genito Maure, Eduardo Mondlane University, Mozambique
Tatiana Marrufo, National Institute of Health, Mozambique
Americo José, National Institute of Health, Mozambique
Innocent Nhapi, Chinhoyi University of Technology, Zimbabwe
Grace Mugumbate, Chinhoyi University of Technology, Zimbabwe
Maria Tsvere, Chinhoyi University of Technology, Zimbabwe
Faidess Mwale, University of Malawi, The Polytechnic, Malawi
Geoffrey Chavula, University of Malawi, The Polytechnic, Malawi
Christabel Kambala, University of Malawi, The Polytechnic, Malawi
Samuel Nii Ardey Codjoe, University of Ghana, Ghana
Abu Mumuni, University of Ghana, Ghana
Francisca Martey, Ghana Meteorological Agency, Ghana;
Environmental Resources Management, Mozambique
National institute of Disaster Management, Mozambique
National Directorate of Water Resources Management, Mozambique
UNDP Malawi, Malawi
Department of Climate Change and Meteorological Services, Malawi
Ministry of Agriculture, Irrigation and Water Department, Malawi
Department of Disaster Management Affairs, Malawi
Ministry of Health Malawi, Malawi
Centre for Health, Agriculture, Development Research and Consulting, Malawi
Water Research Institute, Ghana
ECMWF, UK
Norwegian Meteorological Institute, Norway
Kruger, Denmark
Columbia University, USA
Eurecat, Spain; NASA, USA
System strengthening for the implementation of cholera interventions in a fragile region of NigeriaKarolinska Institutet01/09/202001/10/2022NigeriaCase management - Community engagement - Epidemiology surveillance - Laboratory surveillance - Vaccines - Water, Sanitation and Hygiene (WASH)

Introduction: Adamawa and Bauchi are cholera endemic states in the north-east region of Nigeria, each with local government areas classified as cholera hotspots. Ineffective implementation of multi-sectoral cholera interventions in both states could make obtaining the global target for cholera control in Nigeria out of reach. A major contributing factor to this challenge is fragility of the region due to persistent Boko Haram insurgency activities, often characterised by the destruction of health infrastruture and displacement of communities to areas with suboptimal living conditions. Given the complexity of disease control in such a fragile setting, this study aims to systematically examine the barriers and/or facilitators influencing the implementation of existing cholera interventions in these states.

Methods: The study will use a systems dynamic approach. First, we will conduct a health facility survey to determine the current health system capacity to support multi-sectoral cholera interventions, and conduct key informant interviews with purposely selected state and national cholera stakeholders to identify the context-specific facilitators and barriers to the implementation of cholera interventions in these states. We will then conduct nine group model building workshops (four in both the Adamawa and Bauchi states and one in Abuja) among cholera stakeholders similar to those recruited for the interviews.

Conclusion: By engaging diverse and relevant cholera stakeholders, including community members, this study has the potential to provide a rich understanding of context-specific factors influencing the implementation of multi-sectoral cholera interventions in a fragile region of Nigeria, with a view to achieve sustainable progress towards cholera control in the country.

Adamawa and Bauchi states are cholera endemic states in the north-east region of Nigeria, each with some local government areas classified as cholera hotspots or high burden areas. However, the prevailing activities of armed conflict, as perpetuated by Boko-Haram, in the region could make the implementation of multi-sectoral cholera interventions ineffective. Moreover, addressing disease burden in such fragile settings is particularly challenging. Thus, this study aims to systematically examine the barriers and/or facilitators influencing the implementation of existing cholera interventions in these states.

To achieve these objectives, the study will use a systems dynamic approach, by first conducting a health facility survey to determine the current health system capacity to support multi-sectoral cholera interventions, as well as conducting key informant interviews with purposely selected cholera stakeholders at various levels of government. These research activities will then be followed by a series of participatory workshops (four in both Adamawa and Bauchi states and one in Abuja) among participants with similar characteristics as those in the key informant interviews. It is worth noting that findings from the first phase of the study will be informing the workshop activities.

Overall, by engaging diverse and relevant cholera stakeholders, including community members, this study has the potential to provide a rich understanding of context-specific factors influencing the implementation of multi-sectoral cholera interventions in a fragile region of Nigeria, with a view to achieve sustainable progress towards cholera control in the country.

Nationally, the study would be providing context-specific findings, generated in collaboration with various cholera stakeholders including policymakers and community representatives. Globally, the study is designed around the GTFCC’s global strategic framework, thereby making the potential findings of direct relevance to cholera global stakeholders.

OtherStudy protocol: Understanding the factors enabling and blocking sustained implementation of cholera interventions in a fragile region of Nigeria: a multi-phase group model building study protocol https://f1000research.com/articles/10-85 Carina King, Karolinska Institutet
Tobias Alfven, Karolinska Institutet
Karin Diaconu, Queen Margaret University
John Ansah, Duke-NUS Medical School Singapore
Sebastian Yennan, Nigeria CDC
Chinese Ochu, Nigeria CDC
Emmanuel Pembi, Adamawa State Ministry of Health
Ghandi Yoga, Bauchi State Ministry of Health
Epidemiology of cholera in Uganda, Tanzania and BurundiJohns Hopkins Bloomberg School of Public Health15/02/202126/02/2021Uganda - Burundi - TanzaniaCase management - Community engagement - Epidemiology surveillance - Laboratory surveillance - Water, Sanitation and Hygiene (WASH)

The project is to gain an understanding of the epidemiology of cholera in the Great Lakes Region – Africa to develop tailored prevention investment plans in identified hotspots of Uganda, Tanzania and Burundi.

Specifically, the project is designed to 1) identify hotspots in these countries, 2) develop factsheets on cholera to guide preparedness, 3) and prepare investment plans for for these hotspots. Notably, UNICEF has a method for hotspot mapping which is different from the GTFCC; thus maps using these two methods are presented and compared.

Analyze the epidemiology of cholera in Uganda, Tanzania, and Burundi to prepare hotspot maps and attempt to identify factors that influence cholera rates in these hotspot areas. Based on the identification of these hotspots, the project should prepare recommendations for cholera control using an integrated approach. Eventually, this should result in an investment plan.

The countries should be able to use this information in preparing their National Cholera Control Plans.

Amanda DebesUNICEF country offices & Ministries of Health of Burundi, Tanzania & Uganda
Effect of extended dose intervals on the iImmune response to oral cholera vaccine in CameroonJohns Hopkins Bloomberg School of Public Health07/12/201931/05/2021CameroonCommunity engagement - Vaccines

This project will compare the vibriocidal titers in subjects who receive a second dose of oral cholera vaccine (Shanchol), two weeks, 6 months or 11.5 months after the first dose. The primary outcome is the geometric mean vibriocidal titer two weeks after the second dose. Additional follow-up serum samples will determine the persistence of the vibriocidal titers.

This will provide guidance when the second dose of OCV is delayed.

Amanda Debes
Jerome Ateudjieu
MA Santé